
NASA-CR-202425
,/

Investigations into Generalization of

Constraint-Based Scheduling Theories with

Applications to Space Telescope Observation Scheduling

Final Report for NASA Contract # NCC 2-531

Submitted to:

NASA Ames Research Center

University Grants Office

Mail Stop JAC:241-1
Moffett Field, CA 94035-1000

Attn: Sonie Lau

Prepared by:

Nicola Muscettola and Stephen F. Smith
The Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213

September, 1996

Executive Summary

This final report summarizes research performed under NASA contract #NCC 2-531 toward

generalization of constraint-based scheduling theories and techniques for application to space

telescope observation scheduling problems. Space telescope observation scheduling, like many

complex scheduling problems, requires attendance to several classes of interacting constraints.
At one level, it is necessary to reconcile the requirements of a large and conflicting set of user

requests with the overall objective of optimizing resource utilization and maximizing scientific
return. However, allocation decisions must also satisfy complex physical constraints that

introduce interactions between the behavior of the various components of the system and its

environment. These constraints actually dictate the circumstances under which specific user

requests can be achieved and introduce the need for planning, synchronizing, and allocating

resources to auxiliary enabling system activities. In short, these problems require integration of

scheduling and plan generation capabilities.

Our work into theories and techniques for solution of this class of problems has led to

development of HSTS (Heuristic Scheduling Testbed System), a software system that provides a
unified framework for integrated planning and scheduling. Within HSTS, planning and

scheduling are treated as two complementary aspects of the more general process of constructing
a feasible set of behaviors of a target system. We have validated the HSTS approach by applying

it to the problem of generating observation schedules for the Hubble Space Telescope.

This report summarizes the HSTS framework and its application to the Hubble Space

Telescope domain. First, the principal components of the HSTS software architecture are

described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2)
how schedules are represented at multiple levels of abstraction, and (3) the problem solving

machinery that is provided. Next, the specific scheduler developed within this software
architecture for detailed management of Hubble Space Telescope operations is presented.

Finally, experimental performance results are given that confirm the utility and practicality of the

approach.

Table of Contents
1. INTRODUCTION

2. THE HST DOMAIN

3. MODELING COMPLEX SYSTEM DYNAMICS IN HSTS

4. THE HST DOMAIN MODEL

5. THE TEMPORAL DATA DASE

6. THE PLANNING PROCESS

7. OBSERVATION SCHEDULING IN THE HST DOMAIN

7.1. Sequencing heuristics
7.2. Detailed Planning Heuristics

8. PERFORMANCE RESULTS

9. CONCLUSIONS

Acknowledgements
REFERENCES

2

5

6

7

11

14

16
16

17

18

19

19

20

Figure 2-1:
Figure 4-1:

Figure 4-2:

Figure 4-3:

Figure 4-4:

Figure 4-5:

Figure 5-1:

Figure 5-2:

Figure 6-1:

List of Figures

The Hubble Space Telescope Domain

Value transition graph for HST-POINTING

Compatibilities for LOCKED (?T)

Value transition graph for WFPC-STATE

Compatibilities for EXPOSE(4n, ?7, ?D)

A sequence compatibility
Insertion of a goal token into a constraint token: (a)

(b) after

Implementation of a contains compatibility

The planning procedure

before;

5

8

8

9

10

10

13

14

15

iii

List of Tables

Table 8-1: Performance results 19

1. INTRODUCTION

Automated robotic systems offer new opportunities in many diverse areas, from flexible

manufacturing to space exploration. However, the extent to which their potentiality can be

actually exploited depends on the ability to efficiently manage their complex operations. The

specific domain of focus in the research described in this paper - coordinating the use of the

Hubble Space Telescope (HST) - is representative of such system management problems.

Efficient operation of such automated systems requires attendance to several classes of
interacting constraints. At one level, it is necessary to reconcile the requirements of a large and

conflicting set of user requests with the overall objective of optimizing resource utilization.
However, allocation decisions must also satisfy complex physical constraints that introduce
interactions between the behavior of the various components of the system and its environment.

These constraints actually dictate the circumstances under which specific user requests can be
achieved and introduce the need for planning, synchronizing, and allocating resources to

auxiliary enabling system activities.

In this paper, we describe HSTS (Heuristic Scheduling Testbed System), a software system
architecture for integrated planning and scheduling that has been applied to the problem of

constructing short-term executable observation schedules for the FIST. HSTS is based on a view
of resource allocation (scheduling) and goal expansion (planning) as complementary aspects of a

more general process of constructing a behavior (or set of behaviors) of a dynamical system that

is consistent with stated goals and constraints [1]. The HSTS software architecture provides three

principal capabilities:

1. a domain description language for modeling the structure and dynamics of the

physical system at multiple levels of abstraction

2. a temporal data base for representing possible evolutions of the state of the system
over time, and

3. a scheduling/planning framework for integrating decision-ma'l,dng at multiple
levels of abstraction

Using the HSTS system, an incremental approach to the HST problem has been adopted, through

development and analysis of increasingly more complex models of the telescope operating
environment. The current HST scheduler operates with a model that captures most of the

complexity of the actual operating environment, and efficiently generates detailed sequences of

system reconfiguration activities that reflect global allocation objectives. At the same time, the
HSTS modeling and problem solving framework is quite general, and is applicable in any

planning domain requiring efficient allocation of resources in the presence of complex physical
constraints. In comparison to traditional software approaches, the HSTS framework advocates

explicit separation of data and control, providing flexibility with respect to changes in system

dynamics and the external environment.

The HST is a sophisticated $1.4 billion observatory that was placed into low earth orbit in

early 1990. With its complement of six viewing instruments, HST allows astronomers to observe
and analyze celestial objects at a distance 7 to 10 times further than is currently possible from

existing ground-based observatories. Potential astronomer demands for telescope viewing time

are virtually unlimited, and maximization of scientific return over the telescope's expected

operational lifetime of 15 years is of fundamental importance. Contention for viewing time

among prospective users is high, and efficient management of telescope operations to maximize

scientific usage is thus a critical operational concern.

Current support for HST operations is provided bv the Science Operations Ground System
(SOGS). At the heart of SOGS is a FORTRAN-based software system called SPSS, originally

envisioned as a tool which would take astronomer viewing programs as input (accepted from

competing proposals on an annual basis) and produce executable spacecraft instructions as
output. SPSS has had a somewhat checkered past [2], due in part to the complexity of the

scheduling problem and the constraints that must be taken into account, and in part to the

difficulty of developing a solution via traditional specification-based software engineering

practices and conventional programming languages. Evolving specifications of various

telescope capabilities and operational constraints, for example, have necessitated several rewrites

to major portions of the code over its 9 year development cycle. As a basis for supporting HST

operations, SPSS has e,xJlibited several shortcomings:

• inflexibility - SPSS implements a rigid approach to solving the problem. The
treatment of different constraints is inextricably bound to the underlying scheduling

algorithm. Unanticipated constraints cannot be easily accommodated, and many
sources of scheduling flexibility admitted by the current HST proposal

specifications [3] simply cannot be exploited. This, in turn, places limits the

system's ability to maximize utilization of the telescope.

• incompleteness - Many detailed physical constraints are not adequately modeled in

SPSS, requiring a significant amount of manual post-processing (i.e. constraint
checking) of the schedules that are produced before they can be executed.

• scope - Schedules are developed non-hierarchically with respect to all embedded

operational constraints by SPSS, making the generation of schedules over horizons

longer than one or two weeks computationally infeasible.

To confront computational problems, the Space Telescope Science Institute - the agency

responsible for overall management of telescope operations - has developed a separate, Artificial

Intelligence (AI) based tool for long term scheduling called SPIKE [4]. SPIKE is used to

partition the requests of approved observation programs into weekly time buckets and currently
serves as a front end to SPSS short-term scheduling. Detailed short-term schedules are currently

generated through the efforts of a sizable group of operations astronomers, who interactively

guide the placement of observations on the time line by SPSS.

The research described in this paper aims at providing a more effective solution to the HST

short-term schedulin_planning problem through integration and extension of recent research in

AI-based planning and scheduling. In contrast to the SPSS solution, the work reported here has

emphasized the development of a framework for flexibly representing and manipulating complex
constraints, as well as the development of heuristic strategies for effectively balancing

conflicting scheduling constraints and objectives. It is important to note that the HST problem is,

in fact, representative of a larger class of space mission planning problems. Many of these other

problems (e.g. coordination of space station activities) are considerably more complex, and
inflexible solution approaches that rely heavily on human intervention and participation will not

be possible. Thus, the importance of better approaches to detailed, short-term scheduling
transcends the HST domain.

As indicated above, the characteristics of the short-term HST scheduling problem require an

integration of what have historically been distinguished as "scheduling" and "planning"

techniques, as each offers specific strengths with respect to the required overall process.
Research in scheduling has classically focused on optimal solutions to idealized resource

allocation problems [5] and local heuristic dispatching rules designed to attend to specific

allocation objectives [6]. More recent research in constraint-based scheduling [7-9] has

emphasizedthe problemof efficiently allocatingresourcesto competingactivities over time in
thepresenceof conflictingobjectivesandpreferences,andhasproducedheuristictechniquesthat
exploit the structure of the problem constraints (in particular, bottleneck analysis) to

opportunistically focus solution development toward an acceptable global compromise. The

power of these techniques visa vis classical dispatch-based approaches has been demonstrated in
large-scale manufacturing scheduling contexts [10]. At the same time, the ability to exploit such

problem structure relies on specific representational assumptions held in common with classical

manufacturing scheduling research [5]. In particular, it is assumed that physical constraints are

"pre-compitable" so that the complete set of activities requiring resources, as well as their

ordering relationships and durations, are known in advance. This leaves resource availability as
the only aspect of state that must be attended to over time, and permits a model of resource

availability wherein a resource is considered unavailable during any interval that it is allocated to

an activity and otherwise available. These representational assumptions are insufficient in
domains like HST scheduling where the ability to execute a given observing request is a complex

function of the state of the underlying physical system and variably implies different networks of

supporting activities and resource requirements. In such domains, techniques based on these

assumptions can at best provide guidance in focusing the development of an executable
schedule.

AI-based research in planning, alternatively, has focused on the problem of "compiling"

activity networks that bring about desired goal states from more basic representations of the
effects of actions in the world. However, as with scheduling research, the techniques that have

emerged do not fully address the requirements of the class of problems described above. The

appropriateness of classical STRiPS-style representational assumptions [11,12] is limited, given
the absence of primitives for expressing temporal constraints and the obvious need to deal

explicitly with time (in both absolute and relative senses). More recently developed
representational frameworks [13-16] do provide these capabilities. However, with few

exceptions (e.g. [15]), these frameworks have not attempted to exploit the inherent structure of

the underlying physical system Of interest. Given the complexity of systems like HST, the ability
to work with decomposable models of system behavior is fundamental to managing the

combinatorics of search. More generally, current planning representations and frameworks do

not provide a convenient basis for reasoning globally about efficient resource allocation.
Interactions in resource requirements emerge only as the represented physical constraints are

applied to achieve planning goals. Allocation conflicts can be avoided, but there is no leverage
to anticipate resource contention, compromise among conflicting objectives and dynamically

organize planning on this basis.

The remainder of the paper describes the HSTS software system architecture for integrated

planning and scheduling and its application to the HST short-term scheduling problem. First, a

description of the HST operating environment is given. Then, the description language is

presented and its use is illustrated by detailing the current model of the HST operating
environment. An overview of the integrated HSTS scheduling and planning framework is

presented next, followed by a description of the heuristics implemented in the current HST
scheduler. Finally, performance results obtained on a realistically-sized observation scheduling

problem are given, and the implications of our solution are discussed.

2. THE HST DOMAIN

Before we introduce the HSTS approach to modeling complex systems, let us give a brief

overview of the HST operating environment.

Considered as a whole, HST is a very. sophisticated "sensor"; it gathers light from celestial

objects, named targets, and communicates scientific data back to Earth through one of two
TDRSS communication satellites (Figure 2-1). Since the telescope is in low earth orbit, both the

targets and the satellites are periodically occulted by the Earth.

Data
Path

t Tape
Recorder

Scientific
Instruments

Vn f

--_" Pointing
Device

Targets

%
r / Receiving

i 1 '_l Devices

Communication] i
Devices

Figure 2-1: The Hubble Space Telescope Domain

The telescope itself consists of several components; their behavior must be coordinated over
time due to the limitation of available electric power, the need to maintain acceptable

temperature profiles on the telescope structure, etc. The pointing device represents the HST

subsystem responsible for orienting it in the direction of a target and locking the target at the
center of the field of view of a designated scientific instrument. HST has 6 different scientific
instruments. Limitations on available electric power prevent all of them from being switched on

simultaneously. Data can be read from the instruments and directly communicated to Earth

through one of two links operating at different communication rates (1Mb/sec and 4kb/sec); data
can also be temporarily stored on an on-board tape recorder and communicated to Earth at a later

time.

Astronomers formulate observation programs according to a fairly sophisticated specification

language [10]. The basic structure of each program is a partial ordering of observations, each

specifying the collection of light from a celestial object with one of the telescope's six scientific
instruments. A diverse set of temporal constraints can be imposed on the observations in a

program,includingprecedences,windowsof opportunity,for groupsof observations,minimum
andmaximumtemporalseparations,andcoordinatedparallelobservationswith differentviewing
instruments.

Solving theHST observationschedulingproblemrequiresthe generationof the sequenceof
commandsneededboth to carry out observations(e.g., "take an exposure","communicateto
Earth datafrom instrumentX") andto reconfigurethetelescopeto enableobservationexecution
(e.g., "point telescopeto targetY", "switchon instrumentZ").

3. MODEL_G COMPLEX SYSTEM DYNAMICS L-N HSTS

In this section we introduce the primitives of the HSTS Domain Description Language (HSTS-

DDL). The HSTS-DDL supports modeling of a system at multiple levels of abstraction as a

collection of interacting components.

An HSTS model is subdivided into a set of system components, each of which has an

associated set of properties. At any instant of time, each property of the system can have one

and only one associated value. Some properties are static, i.e., their value does not change over
time. Others are dynamic, i.e., usually their values change over time; in the following we will
also refer to these as state variables.

The HSTS Domain Description Language requires explicit declaration of the set of possible
values that can be assumed by each dynamic property. In general, a value has the form

R (x l, x 2, x n), where <x l, x: x,, > represents a tuple in the relation R.

A behavior of the system is an evolution over time of the values of its state variables: it is

completely specified once each state variable has an associated value for each instant of time. In
a behavior, each state variable changes its value a discrete number of times and a value persists
for a continuous interval of time.

To fully describe a value, HSTS-DDL requires the specification of its duration, a constraint

on its temporal length due to the value's intrinsic characteristics. A duration is a pair of temporal
distances [d, D], D _>d_> 0 where d and D are respectively the lower bound and the upper bound

of the duration: in general both may be functions of some arguments of the value.

The complexity, of the dynamics of a system stems from the interactions between different
state variables. In fact, a value can be present in a behavior of the system only if well-defined

patterns of values occur over time on the state variables. In HSTS-DDL these patterns are

specified by associating a compatibility specification with each value. A compatibility

specification consists of one or more sets of compatibilities organized as an AND/OR graph. A

compatibility associated to a (constrained) value specifies how this value must be temporally
related to another (constraining) value or sequence of values. More precisely, a compatibility is a

4-tuple:

<comp-class, st-var, type, temp-rel>

where comp--class iseither the symbol VALUE or the symbol SEQUENCE, indicating whether

the compatibility, involves a single constraining value or a constraining sequence of contiguous
values; st-var is the state variable of the constraining value or sequence; type indicates the subset

of values from which the constraining value or sequence is extracted; and temp-rel is a temporal

relation that specifies a pattern of distance constraints. For example, the temporal relation

before ([d, D]) means that the end of the constraining value/sequence must precede the start of
the constrained value by an interval of time 8, such that d _< 5 < D. The relation

contains([dl, D I], [d:, D_,]), indicates that the constrained value must be contained within the

constraining value/sequence; [dt, D_] defines the distance between the two start times and

[d:, D2] defines the distance between the two ends. In the next section we will give several

examples of compatibility specifications.

A model represented in HSTS-DDL can be subdivided into a number of layers of abstraction.
An abstract model consists of system components and state variables that aggregate several

components and state variables at more detailed levels. The relationship among the layers is

established by refinement descriptors that map some of the values associated with an abstract

layer into a network of values associated with the immediately more detailed layer. The mapping

also specifies the correspondence between the start and end times of each abstract value and

those of the corresponding detailed values.

4. THE HST DOMAIN MODEL

Within HSTS, we have developed a model of the HST operating environment. At present, it

includes 2 of the 6 HST scientific instruments, telescope pointing, data communication to Earth

and the on-board tape recorder. The components of this model are summarized below.

The environment external to the telescope consists of targets and TDRSS satellites. For each of

them, a distinct state variable characterizes its visibility with respect to the space telescope.

The possible values of the pointing apparatus (state variable HST-POINTING) are:

LOCKED(?T), UNLOCKED(?T), LOCKING(?T), and SLEWING(?TI,?T2). Here ?T,
?T1, and ?72 are variables denoting possible targets. For example, SLEWhVG(?T1, ?72)

represents the movement of the telescope from the direction pointing to ?T1 to that pointing to
?72. Figure 4-1 shows the possible transitions among values. An edge connects two nodes if the

corresponding values are related by a before([O,O]) compatibility. The highlighted nodes

represent "stable values", i.e., values with intrinsic duration [0, +oo]; all the other nodes represent
states with finite durations.

During telescope repointing, some of the values can occur only while a target is visible. More

precisely, a window of visibility for target ?T must necessarily contain the occurrence of a
LOCKING (?T) operation and of a LOCKED(?T) state. Figure 4-2 lists the complete

compatibility specification for LOCKED (?T). It indicates that in every correct behavior of HST,

LOCKED can appear on HST-POINTING either in a sequence LOCKhVG, LOCKED, UNLOCKED

or in a sequence LOCKING, LOCKED, SLEWING, together with the constraint of co-occurrence
between LOCKED and a target visibility window.

Of the two instruments currently modeled, the Wide Field Planetary Camera is the most

complex. It consists of two different sets of CCD sensors, or detectors, the Wide Field Camera
(WF) and the Planetary Camera (PC). Both share the same support module that provides them

with temperature control, optical filters reconfiguration operations, etc.; we will denote the

support module with WFPC. Each of the three components of the Wide Field Planetary Camera
is modeled as a separate state variable. Figure 4-3 shows the value transition graph for the
_,VFPC-STATE state variable; similar graphs describe the value transitions of WT-STATE and

PC-STATE.

r (2,_ a,ut _ 14ul

\ c°°_acn_ 12s_
t) ooo_,mOm t (,.,,._

t (3s. 2._) / s (4n)

I (3n. **,hi wan*r._ (4n)

Figure 4-3: Value transition graph for WFPC-STATE

The value s(2s) represents the state where the Wide Field Planetary Camera is switched off,

and the values s(4u) and s(4n) represent fully operational states. Both WF-STATE and PC-STATE

can assume, as a possible value, EXPOSE(?config, ?target, ?duration), which represents a

picture taking operation; here the variable ?config can be either 4u or 4n, depending on the

operational configuration required on the WFPC. Figure 4-4 expresses the compatibilities that
have to be satisfied for the occurrence of EXPOSE(4n, ?target, ?duration) on the WF-STATE.

Further physical constraints require synchronization of the warmup and cooldown processes of

each of the three instrument components. For example while the WF-STATE has value s(3n),

WFPC-STATE can undergo any warm-up or cool-down sequences between s(3n) and s(4n); this is

represented as a compatibility associated with the s(3n) of the WF-STATE (Figure 4-5).

Data are read out of a detector either by the tape recorder or by one of the two communication

links. The values of TAPE-RECORDER-STATE indicate that the quantity of stored data increases at

each read-out operation and that the content of the tape recorder has to be "dumped" to Earth

when a given capacity threshold is exceeded. The read-out operations on the communication
links and the dump operation on the tape recorder must occur during a window of visibility of
one of the two TDRSS satellites.

To provide a global perspective on HST operation, the detailed model just described is

augmented with an abstract model. Here the whole telescope is described as a single state
variable, HST-STATE. The possible values of the abstract state variable are

OBSERVE(?P, ?I, ?S, ?T, ...) (where ?P designates an observation program, ?I designates a

viewing instrument, ?S designates the required operating state of ?/, and ?T designates a target),
RECONFIGURE(?FROM-I, ?TO-I), which represent the reconfiguration process between

10

AND [<VALUE, HST-ROINT1NG,LOCKED (?target), contains ([0, +_], [0, +_])>,

<VALUE, PC-STATE,S (2s), contains ([0, +_], [0, +_])>,

<VALUE, WFPC-STATE, S (4n), contains ([0, +_], [0, +_])>]

Figure 4-4: Compatibilities for EXPOSE (4n, ?7, ?D)

< SEQUENCE,
WFPC-STATE,

{ S (3n), T (3n, 4n), WARMUP (4n), S (4n), T (4n, 3n), COOLDOWN (3n) },
contains ([0, +_], [0, +_])>

Figure 4-5: A sequence compatibility

11

two observations,and IDLE, which represent a stationary state of the telescope where all

detectors are off and the tape recorder is empty. The value

RECONFIGURE(?FROM-I, ?TO-t) provides an abstract description of an entire segment of
detailed behavior: its duration can be determined by analyzing the network of values that

implements it at the detailed level.

Correspondence between abstract and detailed layers is insured by a refinement descriptor that

maps an abstract OBSERVE(?P, ?I, ?S, ?7, ...) value into the detailed EXPOSE and READ-OUT

values that actually implement it.

5. THE TEMPORAL DATA DASE

In HSTS, the construction of an executable schedule is viewed as an incremental process of

constraint posting and propagation on a central data base. The HSTS Temporal Data Base
(HSTS-TDB) extends the philosophy of the time map formalism developed in [17] by tightly

connecting the state of the data base and the model of a system. This association provides a

strong basis to support planning and enforce data base consistency.

The unit of description of temporal behavior is the token, a quadruple

< state-variable, type, st, et, >, where state-variable is the identifier of one of the state variables

in the system model, type is a subset of the state variable values, and st and et are the token's

start and end times respectively. The token's meaning is that state-variable assumes a sequence
of one or more values extracted from the set type during the interval of time within st and et.

Depending on the number of values that the state variable can assume within st and et, we

distinguish between two different kinds of tokens:

1. value tokens: A value token indicates that, within st and et, state-variable assumes

a single, constant value in type.

2. constraint tokens: A constraint token specifies that, within st and et, state-variable

assumes a sequence of values of indefinite length (possibly empty), each belonging

to type. During the refinement of a constraint token can be replaced by a sequence
of value tokens satisfying the sequence's type constraint; therefore the constraint

token is the primary mechanism for describing partially specified evolutions of
state variables over time.

The representation of time in HSTS-TDB is flexible, as is the one used in CPM/PERT
networks [18] and other temporal data bases [17]. The st and et of each token are considered as

variables; durations and compatibilities derived from a system model and temporal requirements

imposed by the user specify constraints among these variables. HSTS-TDB represents temporal
information as a directed graph, with token's starts and ends associated to the nodes; a directed

edge labeled with the pair [d, D] from node ti to tj indicates the existence of a relative temporal

constraint between ti and tj that restricts their distance to vary within the interval [d, D]. Absolute
temporal constraints are represented as relative distances from a reference time constant that

represents the origin of the temporal axis.

The tight connection between a network of tokens in HSTS-TDB and the corresponding

system model expressed in HSTS-DDL implies that a value can appear in a physically consistent
evolution of a state variable only if it satisfies the constraints imposed by the physics of the

system; in order to enforce and test consistency, each value token that has been constrained to

12

assume exactly one value in _pe is associated with an instance of the compatibility specification

graph associated with the value in the model. As we will see in the following, the planning
process consists essentially of constructively demonstrating the existence of a set of behaviors

that satisfies the requirements of the compatibility specifications for the tokens in the database.

HSTS-TDB also supports problem solving at multiple levels of abstractions. This is obtained

by subdividing a token network into a number of communicating layers, each corresponding to a
level of abstraction in the system model. Each value token whose type has a refinement

specification in the system model is associated with an instance of its specification. As we will
see in the following, consistency among layers of abstraction is established by connecting tokens

in order to satisfy the requirements of refinement specifications.

In each layer, tokens are organized in two networks: a goal network and a behavior network.

The goal network contains tokens and temporal constraints that describe the problem's

requirements; each value token is an elementary goal and goals can be related by the same kind

of temporal relations used to specify compatibilities. For example, in an HST observation

scheduling program each request for an observation (e.g., observe target 3C267 with the WF in
configuration 4n) is translated into a value token; relative temporal constraints among

observations (e.g., take two pictures of 3C267 separated by at least one day) are implemented by

temporal relations among tokens while absolute temporal constraints (e.g., take a picture within

the first 15 days of October 1991) are implemented by temporal relations between the reference

and goal tokens.

Planning at a given level of abstraction consists of repeatedly selecting goal tokens and
building system behaviors that achieve them. The construction of system behaviors proceeds in a

separate token network, the behavior network. For each state variable, a behavior network

contains a linear sequence of tokens that completely covers the entire scheduling horizon. The st
of the first token in the sequence and the er of the last are constrained to occur respectively at the

beginning and at the end of the scheduling horizon; moreover, the et of a token is identical to the
st of the following token in the sequence. If a segment of state variable behavior is only partially

specified, it will be covered by one or more constraint tokens.

During the planning process, each layer of the data base is repeatedly refined through the

application of three basic data base modification operations:

I. commitment on the achievement of a goal. This results in the insertion of a value

token belonging to the goal network into the behavior network. There are two ways

in which this can be accomplished.

The first consists in merging the goal token with a matching value token in the

behavior network. For example, suppose that two different observation programs

require observations with matching characteristics and the behavior network

already contains a plan to achieve one of them; then the achievement of the second
observation can be assured by simply creating a link between the new requirement

in the goal network and the observation token already existing in the behavior
network.

Tt_e second way is to insert the goal token into a compatible constraint token, i.e.,

one whose type has a non empty intersection with the type of the goal token.

Figure 5-1 illustrates in more detail the insertion process. The partial specification
provided by the initial constraint token implicitly allows a certain set of state

variable trajectories; after the insertion of the goal the set of legal trajectories is

13

restrictedto thosethatassumethegoalvalueoverthespecifiedtimeinterval.

Sta.lC vanaBie

va|ue

t
state vanable

va[ue

t 1

_, (aj

i
st (b) et

tf e

lgne

Figure 5-1: Insertion of a goal token into a constraint token: (a) before; (b) after

After the commitment, the two networks share the value token; therefore any

constraint subsequently imposed on one network will propagate to the other (e.g.,

the expansion of an auxiliary task in the behavior network will affect how to

achieve the remaining goals).

2. value compatibility implementation. This operation implements the requirements

specified by one of the open value compatibilities of a token in the behavior
network. The first step consists in the identification of a value token that satisfies

the type requirement in the compatibility; the token is either selected from the

existing ones or created by refining a constraint token. The second step consists in

connecting the two tokens by implementing the specified temporal relation. A

compatibility can be consistently implemented if the behavior contains tokens that

satisfy both the compatibility's type and temporal relation. Type consistency
requires the type of a token to have a nonempty intersection with the type of the

compatibility. Temporal consistency requires that the network of temporal
constraints not contain cycles of distance links with total length necessarily

different from 0. Figure 5-2 summarizes the process of implementing a contains

compatibility in an HST example; the compatibility specifies that while the WF is

taking a picture of target 3C267, the telescope must be pointing and locked on the

target.

3. sequence compatibility implementation. This operation is analogous to the previous

one. In this case the temporal relation connects the constrained value token to a

sequence of value and constraint tokens whose type matches the compatibility's

type constraint. The type of each constraint token in the constraining sequence

t4

mustnowalsosatisfythecompatibility,typeconstraint.

WF-STATE .,_(_ "_

. [0..'..,I(

HST-POINTING _ "_

expose(4n, 3c267, 1200_----_"-_.

CONTaiNS '_ 1 [0._"I

Iocked(3c267) _-/-_

Figure 5-2: Implementation of a contains compatibility

The three operations mentioned above provide the primitive mechanisms to implement

integrated planning and scheduling problem solvers. In fact goal commitment is analogous to a
resource allocation step in a classical scheduling algorithm, while compatibility implementation

corresponds to precondition and postcondition expansion and implementation found in classical

Artificial Intelligence planning. In the next section we will see how these primitives are used in

the HSTS integrated planning and scheduling methodology.

6. THE PLANNING PROCESS

Multiple levels of abstraction can provide significant leverage in managing the combinatorics

of planning and scheduling for complex systems. Abstract views provide a basis for globally
focusing the detailed planning effort; on the other hand, detailed views provide a basis for

sharpening abstract predictions. The HSTS planning and scheduling methodology supports

flexible integration of planning in different layers of the temporal data base.

The objective of planning/scheduling at a given layer of abstraction is to transfer goal tokens

from the goal network into the behavior network and generate a consistent system behavior that
achieves these goals. In HSTS this process of commitment and behavior generation is carried out

incrementally by repeated applications of the planning procedure depicted in Figure 6-1.

All 4 steps in the skeletal procedure of Figure 6-1 typically require choices among alternatives.

For example, a compatibility can be implemented in several ways, since in general we can select

15

PlanningProcedure (GoatNet, BehaviorNet)

(1) select some goals from GoalNet;

(2) insert selected goals in BehaviorNet;

{repeat

(3) select an open compatibility

in BehaviorNet;

(4) implement selected compatibility

until no more open compatibilities }

Figure 6-1: The planning procedure

the constraining token or sequence of tokens in different positions within the evolution of a state
variable. When different choices are possible, they are separately explored through the

application of a heuristic search procedure. However, the pruning and selection criteria used by
the search are not provided by HSTS, since they usually depend on the characteristics of both the

application domain and the problem to be solved. The procedure constitutes only a skeleton that
needs to be augmented with additional heuristic knowledge when implementing a

planner/scheduler for a particular domain. In the next section we will discuss the heuristics
presently used by the HST observation scheduler.

Each representational layer has an associated planning process. A planning process exchanges
information with its two adjacent layers (or to the external world if a layer does not exist). Let

us consider two adjacent layers i and i+l, where i is less abstract than i+I. The communication

from i+ 1 to i involves the request to solve a problem, i.e., a refined goal network and preferences

on how the goals should be achieved (e.g., "achieve all the goals as soon as possible"). Process i
communicates back to level i+1 more precise information resulting from detailed problem

solving, in particular additional temporal constraints on the abstract goals.

At its core, a planning process repeatedly calls the planning procedure described before, using
heuristics that are most suitable to the characteristics of the system model. When a procedure

returns, the process has to decide whether to continue planning at this level or to communicate

information to one of the adjacent layers and pass the control to the corresponding process.

Processing stops when either all the goals communicated by the user have been achieved or it
has been determined that no more goals can be achieved.

The HSTS planning/scheduling methodology does not impose a specific pattern of

16

coordination among problem solving at different levels of abstractions. Therefore, the
implementation of a problem solver for a specific application domain requires specifying how

the various planning processes coordinate. The next section describes the coordination that is

currently used by the HST observation scheduler.

7. OBSERVATION SCHEDULING IN THE HST DOMAIN

In this section we describe the scheduler for the HST domain currently implemented in the

HSTS architecture. Some performance results obtained with the program on realistically-sized

observation scheduling problems will then be reported.

Given the two-level model described in an earlier section, the current HSTS observation

scheduler has two planning processes acting on each layer of a two-layer temporal data base.

Planning at the abstract level has responsibility for determining the sequence of observations to
be executed; planning at the detailed level is responsible for developing a detailed system

behavior that implements this observation sequence.

To make use of more precise information about actual telescope reconfiguration durations as

scheduling proceeds, decision-making at the abstract level and at the detailed level are tightly

coupled. Each time an observation is selected and inserted into the abstract behavior network, on
the basis of the abstract estimates of telescope reconfiguration times, control is passed to detailed

planning that expands the detailed setup tasks to achieve the new expose and communicate goals.

Abstract planning currently utilizes a dispatch-based approach (see below); on each iteration, an
additional observation is appended to the abstract behavior extending the schedule strictly
forward in time.

The heuristics employed by each planning process reflects an overall objective of maximizing

the amount of time during which the telescope actually collects scientific data. These heuristics

are described in the following two subsections.

7.1. Sequencing heuristics

At the abstract level, a single state variable characterizes the behavior of the telescope and

there is only one possible path through its associated value transition graph. The complexity of

decision-making at this level lies entirely in goal selection.

Selection of the next goal to achieve is accomplished by a local greedy heuristic designed to
minimize dead time between observations. Specifically, a one-step look-ahead search is

performed where each of the eligible candidates in the goal network are hypothesized as the next
observation to be executed. A goal may be ineligible due to ordering constraints with other

unachieved goals or due to absolute time constraints. Among the eligible goals, the one that

yields the estimated earliest start time is identified. However, selection of this goal might prevent

the subsequent achievement of one or more other goals due to some temporal constraint in the
network. If this is not the case, the earliest start goal becomes the final selection; otherwise, the

temporally constrained goal with the highest priority is selected, and the remaining unachievable

goals are removed from the goal network.

17

7.2. Detailed Planning Heuristics

At the detailed level, the selection of goals results from the refinement of the choice made at

the abstract level. However, heuristics guide the compatibility selection and implementation

decisions.

Selection of a compatibility to implement: The compatibility specification graphs of the
detailed model contain OR nodes. Once these graphs are instantiated in the temporal data base,

the planner must select only one of the alternative OR branches for implementation. Heuristics

perform this selection. All compatibilities that remain after this selection process must be
achieved to obtain a complete plan. Therefore, we need an additional mechanism to select the

order in which they will be implemented. The order determines how the topology of the
behavior network evolves, a factor that directly influences the effort required to implement

successive compatibilities.

Let us give an example of the OR compatibility selection heuristic. The graph describing

value adjacencies can present branching (as in the case of value s(3n) for the WFPC-STATE

(Figure 4-3). The current FIST model presents this situation for all the state variables associated
with the two scientific instruments, and for the telescope pointing state. The topology of each of

these graphs, however, grants the existence of a single acyclical path for each ordered pair of

values. The existing interactions between the durations of sequences of values and the

compatibility temporal relations in the HST model assure that the minimal length path correctly
coordinates on time with other state variables. The heuristic therefore consists of a table,

indexed by a pair <branching-value, destination-value>, where each entry represents the first
value encountered in the acyclical path starting from the branching value and reaching the
destination value.

For another example, let us consider the communication of data to Earth through the fast
communication link (1Mb-link); this process requires locking the telescope onto one of the two
TDRSS satellites. To minimize idle time, an heuristic chooses the satellite that allows scheduling

of the communication operation as soon as possible after the corresponding exposure. The

selection considers how the visibility windows of the target required by the exposure overlap
with those of the two alternative satellites, together with the kind of synchronization between

expose and communicate (e.g., before, contains).

The mechanism that selects the order of compatibility implementations gives priority to

compatibilities that relate values on the same state variable. Whenever such a compatibility is

open, a gap (i.e., a constraint token) exists among two values on a state variable. The planner
continues to extend the sequence of values on the state variable until the gap is closed.

If no compatibility that relates values on the same state variable is open, then the planner

selects a compatibility that involves different state variables. The open "cross" compatibilities

among each pair of state variables are organized in a separate queue. The selection mechanism

chooses a queue and tries to achieve all the contained compatibilities one by one. However, the
satisfaction of a cross compatibility might create a gap on a state variable. In this case, the

dequeueing of cross compatibilities is suspended until the new gap is closed.

Implementation of a compatibility: The implementation of a compatibility requires the

determination of the position of the requested value or sequence in the behavior network.

A fetch operation linearly scans the sequence of tokens associated to the required state variable

18

in thebehaviornetwork:asa resultit returnsalist of candidatetokensor sequencesof tokens.
HSTS useslook-aheadtemporalconstraintpropagationto detectinconsistencies.Mechanisms
are providedto limit suchpropagationto a subnetworkof temporalconstraints.Bv relying on
the decompositionof themodel into interactingstatevariables,it is possibleto associateeach
cross compatibility with a set of tightly coupledstatevariables. The look-aheadconstraint
propagationwill limit thesearchfor cyclestothesestatevariables.

Among the alternativesreturnedby the fetch operation,a heuristic gives prio.rit.y.to the
alternativethat is temporallyclosestto theconstrainedvalue,given thegoal of rmmrmzmgthe
time spentin reconfiguringthetelescope.

8. PERFORMANCE RESULTS

We conducted experiments with three models of the HST operating environment of increasing

complexity and realism, respectively denoted as SMALL, MEDIUM and LARGE model. All models

share a representation of the telescope at the abstract level as a single state variable; they differ

with respect to the number of components modeled at the detailed level. The SMALL model

consists only of the telescope pointing device and the Wide Field Planetary Camera. The
MEDIUM model adds the two state variables for the Faint Object Spectrograph to the previous

model, while the BIG model includes also data communication and tape recorder management.

The test problem consists of a set of 50 observation programs, each containing a single

observation with no user-imposed time constraints. The experiments were run on a TI Explorer

II+ with 16 Mbytes of RAM memory.

The data in Table 8-1 give some measures relative to the final executable schedule that was

produced with each model. The number of tokens indicates the total number of distinct state
variable values that constitute the schedule. The temporal separation constraints are distance

constraints that relate two time points on different state variables; their number gives and

indication of the amount of synchronization needed to coordinate the evolution of the state
variables in the schedule.

With respect to the processing times, notice that since the heuristics that guide the planning
search exploit the modularity of the model and the locality of interactions, the average CPU time

(excluding garbage collection) spent implementing each required compatibility in the three
models remains relatively stable. The total elapsed time (including garbage collection) spent

generating an executable schedule for the 50 observations is an acceptable fraction of the time
horizon covered by the schedules; this indicates the practicality of the framework in the actual

HST operating environment.

With regard to the quality of the schedules, the percentage of time spent taking exposures with

respect to the time horizon covered varies between 22% and 25%. This result is comparable with
general expectations of telescope use. However further research is needed to represent the full
extent of the actual operating constraints (e.g. treatment of availability of electric power) and to

devise strategies to generate efficient schedules for problems involving more complex program
constraints. To this end, we are currently investigating the integration of global problem space

analysis and focusing techniques [19,9,4]. Some initial results in this direction are reported in

[20].

19

Table I
Performance Results

Timea Reported in Hours, Minutes, Seconds, and Fractions of Seconds

Model SMALL MEDIUM tB IG
I

State Variables

Tokens

Tune Points

Temporal Constraints

CPU Time/Observation

CPU Time/Compatibility.
I

=TotalCPU time

Total Elapsed Time

Schedule Horizon

4

587

588

1296

11.62

0.29

9:41.00

1:08:36.001

41:37:20.00'

6

1328 I

12.25

0.29
I0:11.50

I
I:13:I6.001

54:25:46.00

13

843

716

1474 I

21.74

0.33

18:07.00

2:34:07.00

52:44:4 [.0

Table 8-1: Performance results

9. CONCLUSIONS

To efficiently operate complex robotics systems, it is necessary to allocate system resources to

competing user requests while coordinating system reconfiguration activities. HSTS addresses

both concerns within an integrated planning and scheduling architecture. HSTS has been applied

to the Hubble Space Telescope observation scheduling domain. Its modeling capabilities allow

explicit representation of the various system components and their interactions over time; this

leads naturally to a framework for incrementally addressing complex problems, through

development of solutions to a series of increasingly more realistic scenarios. The structural

characteristics of the model can be exploited by heuristics that guide the coordinated planning

processes; this allows the design of efficient planning and scheduling algorithms operating at

multiple levels of abstraction. Finally, the evolving schedule is represented as an explicit
network of constraints; the flexibility remaining in the final solution (e.g., on the start and

duration of various activities) eases the adjustment of a schedule when reacting to unexpected

external events.

Acknowledgements
The authors thank Amedeo Cesta, Daniela D'Aloisi, Gilad Amiri and Dhiraj Pathak for their

valuable contributions to the HSTS project and Bob Frederking for comments on an earlier draft

of this report.

2O

REFERENCES

[1] Muscettola, N., Planning the Behavior of Dynamical Systems, Technical Report CMU-RI-
TR-90-i0, The Robotics Institute, Carnegie MeLlon University, 1990.

[2] Waldrop, M., "Will the Hubble Space Telescope Compute?", Science, vol. 243, pp.
1437-1439, Mar. 1989.

[3] STScI, Proposal Instructions for the Hubble Space Telescope, Technical Report, Space

Telescope Science Institute, 1986.

[4] Johnston, M.D., "SPIKE: AI Scheduling for NASA's Hubble Space Telescope", in

Proceedings of the 6th Conference on Artificial Intelligence Applications, IEEE Computer

Society Press, pp. 184-190, 1990.

[5] Baker, K.R., Introduction to Sequencing and Scheduling, John Wiley and Sons, New York,
1974.

[6] Panwalker, S.S. and Iskander, W., "A Survey of Scheduling Rules", Operations Research,

vol. 25, pp. 45-61, 1977.

[7] Fox, M.S. and Smith, S.F., "ISIS: A Knowledge-Based System for Factory Scheduling",

Expert Systems, vol. 1, no. 1, pp. 25-49, 1984.

[8] Smith, S.F., Ow, P.S., Potvin, J.Y., Muscettola, N. and Matthys, D., "An Integrated

Framework for Generating and Revising Factory Schedules", Journal of the Operational

Research Society, vol. 41, no. 6, pp. 539-552, 1990.

[9] Sadeh, N. and Fox, M.S., "Variable and Value Ordering Heuristics for Activity-based Job-

shop Scheduling", in Proceedings of the Fourth International Conference on Expert Systems in

Production and Operations Management, Hilton Head Island, S.C., 1990.

[i0] Ow, P.S. and Smith, S.F., "Viewing Scheduling as an Opportunistic Problem Solving

Process", Annals of Operations Research, vol. 12, 1988.

[11] Fikes, R.E., Hart, P.E. and Nilsson, N.J.,"Leaming and Executing Generalized Robot

Plans", Artificial Intelligence, vol. 3, pp. 251-288, 1972.

[12] Wilkins, D.E., Practical Planning, Morgan Kaufmann, 1988.

[13] Allen, J. and Koomen, J.A., "Planning Using a Temporal World Model", Proceedings of
the 8th International Joint Conference on Artificial Intelligence, Karsruhe, Germany, pp.

741-747, 1983.

[14] Dean, T., Firby, R.J. and Miller, D., "Hierarchical Planning Involving Deadlines, Travel
Time, and Resources", Computational Intelligence, vol. 4, pp. 381-398, 1988.

[15] Lansky, A., "Localized Event-based Reasoning for Multiagent Domains", Computational

Intelligence, vol. 4, pp. 319-340, 1988.

[16] Vere, S., "Planning in Time: Windows and Durations for Activities and Goals", IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, 1983.

2!

[17] Dean, T.L. and McDermott, D.V., "Temporal Data Base Management",Artificial
-_,-)Intelligence vol. _,, pp. 1-55, I987.

[18] Hendrickson, C. and Au, T. Project Management for Construction, Prentice Hall, 1989.

[19] Muscettola, N. and S.F. Smith, "A Probabilistic Framework for Resource-Constrained

Multi-Agent Planning", Proceedings of the lOth International Joint Conference on Artificial

Intelligence, Milano, Italy, pp. 1063-1066, 1987.

[20] Smith, S.F and Pathak, D.K., Balancing Antagonistic Time and Resource Utilization
Constraints in Over-Subscribed Scheduling Problems, Technical Report CMU-RI-TR-91-05,

The Robotics Institute, Carnegie Mellon University, 1991.

